The kappa function

Masanobu KANEKO*

Masaaki YOSHIDA ${ }^{\dagger}$

Abstract

The kappa function is introduced as the function κ satisfying $J(\kappa(\tau))=$ $\lambda(\tau)$, where J and λ are the elliptic modular functions. A Fourier expansion of κ is studied. Keywords: covariant function, hypergeometric function, Schwarz's s-function, elliptic modular function. Mathematics Subject Classification: 30C20, 30F35, 33C05

1 Introduction

Let G and G^{\prime} be discrete subgroups of the group $P G L_{2}(\mathbf{C})$ of linear franctional transformations, and $r: G \rightarrow G^{\prime}$ a surjective homomorphism. A holomorphic function $f(z)$ is said to be covariant of type (G, r, G^{\prime}) if

$$
f\left(\frac{a z+b}{c z+d}\right)=\frac{a^{\prime} f(z)+b^{\prime}}{c^{\prime} f(z)+d^{\prime}}, \quad \text { for } \quad g=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G, \quad r(g)=\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right] \in G^{\prime} .
$$

When G^{\prime} is trivial, a covariant function is a G-automorphic function. We are interested in the following cases:

1. $G=G^{\prime}$ is a finite group (r is the identity map). See [OY].
2. $G=G^{\prime}$ is a triangle Fuchsian group (r is the identity map). An example of covariant functions for $G=P S L_{2}(\mathbf{Z})$ is given in [KK].
3. G and G^{\prime} are triangle Fuchsian groups, and $\operatorname{Ker}(r)$ and $G / \operatorname{Ker}(r)$ are both infinite groups.

In this paper, as a typical example of the third case, we introduce the kappa function κ defined by $J(\kappa(\tau))=\lambda(\tau)$, where J and λ are the elliptic modular functions, and study its Fourier expansion at $i \infty$.

[^0]
2 The Schwarz map of the hypergeometric equation

We briefly recall in this section a classical theory of Schwarz maps (cf. [Yos]). Let $E(a, b, c)$ be the hypergeometric differential equation

$$
x(1-x) u^{\prime \prime}+(c-(a+b+1) x) u^{\prime}-a b u=0,
$$

where a, b and c are parameters. Its Schwarz map is defined by

$$
s: X=\mathbf{C}-\{0,1\} \ni x \longmapsto z=u_{1}(x): u_{2}(x) \in Z=\mathbf{P}^{1}:=\mathbf{C} \cup\{\infty\},
$$

where u_{1} and u_{2} are two linearly independent solutions of $E(a, b, c)$. The local exponents of the equation $E(a, b, c)$ at 0,1 and ∞ are given as $\{0,1-c\},\{0, c-a-b\}$ and $\{a, b\}$, respectively. Denote the differences of the local exponents by

$$
\mu_{0}=1-c, \quad \mu_{1}=c-a-b, \quad \mu_{\infty}=a-b,
$$

and the monodromy group by $\operatorname{Monod}\left(\mu_{0}, \mu_{1}, \mu_{\infty}\right)$. Then the Schwarzian derivative $\{s ; x\}$ of s with respect to x is given as

$$
\begin{aligned}
-4\{s ; x\} & =\frac{2 s^{\prime} s^{\prime \prime \prime}-3\left(s^{\prime \prime}\right)^{2}}{\left(s^{\prime}\right)^{2}} \\
& =\frac{1-\mu_{0}^{2}}{x^{2}}+\frac{1-\mu_{1}^{2}}{(1-x)^{2}}+\frac{1+\mu_{\infty}^{2}-\mu_{0}^{2}-\mu_{1}^{2}}{x(1-x)}
\end{aligned}
$$

We assume that the parameters a, b and c are rational numbers such that

$$
k_{0}:=\frac{1}{\left|\mu_{0}\right|}, \quad k_{1}:=\frac{1}{\left|\mu_{1}\right|}, \quad k_{\infty}:=\frac{1}{\left|\mu_{\infty}\right|} \quad \in\{2,3, \ldots\} \cup\{\infty\},
$$

and $1 / k_{0}+1 / k_{1}+1 / k_{\infty}<1$. Then the Schwarz map

$$
s=s_{\left(k_{0}, k_{1}, k_{\infty}\right)}: X \longrightarrow \mathbf{H}=\{z \in \mathbf{C} \mid \Im(z)>0\}
$$

gives the developing map of the universal branched covering with ramification indices $\left(k_{0}, k_{1}, k_{\infty}\right)$; its inverse map

$$
s^{-1}: \mathbf{H}-\operatorname{Fix}(\Delta) \longrightarrow X
$$

is single-valued, and induces the isomorphism $(\mathbf{H}-\operatorname{Fix}(\Delta)) / \Delta \cong X$, where $\Delta=$ $\Delta_{\left(k_{0}, k_{1}, k_{\infty}\right)}$ is the monodromy group $\operatorname{Monod}\left(k_{0}, k_{1}, k_{\infty}\right)$ regarded as a transformation group (Schwarz's triangle group) of \mathbf{H}, and $\operatorname{Fix}(\Delta)$ is the set of fixed points of Δ.

3 Covariant functions of type $(\Gamma(2), r, \Delta)$

In particular, when $\left(k_{0}, k_{1}, k_{\infty}\right)=(\infty, \infty, \infty)$, the monodromy group $\Delta_{(\infty, \infty, \infty)}$ is isomorphic to the principal congruence subgroup

$$
\Gamma(2)=\left\{g \in S L_{2}(\mathbf{Z}) \mid g \equiv \operatorname{id} \bmod 2\right\} /\{ \pm 1\}
$$

which has no fixed points, and the inverse of the Schwarz map is known by the name of the lambda function $\lambda(z)$ defined on \mathbf{H}. Since $\lambda: \mathbf{H} \rightarrow X$ is the universal covering of X, for any (k_{0}, k_{1}, k_{∞}) satisfying $1 / k_{0}+1 / k_{1}+1 / k_{\infty}<1$, the branched covering

$$
s^{-1}=s_{\left(k_{0}, k_{1}, k_{\infty}\right)}^{-1}: \mathbf{H}-\operatorname{Fix}(\Delta) \longrightarrow X
$$

factors λ, that is, there is a unique map $f=f_{\left(k_{0}, k_{1}, k_{\infty}\right)}: \mathbf{H} \rightarrow \mathbf{H}-\operatorname{Fix}(\Delta)$ such that

$$
s^{-1}(f(z))=\lambda(z), \quad z \in \mathbf{H},
$$

where $\Delta=\Delta_{\left(k_{0}, k_{1}, k_{\infty}\right)}$. The Galois correspondence can be illustrated as

Here N is a normal subgroup of the fundamental group $\pi_{1}(X)$ of X corresponding to the middle cover $\mathbf{H}-\operatorname{Fix}(\Delta)$. Actually, N is given as follows: Let γ_{0} (resp. γ_{1} and γ_{∞}) be a simple loop around $x=0$ (resp. 1 and ∞), and regard these loops as elements of $\pi_{1}(X)$. Then N is the smallest subgroup of $\pi_{1}(X)$ containing

$$
\gamma_{0}^{k_{0}}, \quad \gamma_{1}^{k_{1}} \quad \text { and } \quad \gamma_{\infty}^{k_{\infty}} .
$$

At any rate, we have

$$
\pi_{1}(X) / N \cong \Delta ;
$$

let $r: \pi_{1}(X) \rightarrow \Delta$ denote the projection.
For a point $z \in \mathbf{H}$, put $w=f(z)$ and $x=\lambda(z)$. Let γ be a loop in X with base x. The lift of γ under λ is a path in \mathbf{H} connecting z and $g(z)$ for some $g \in \Gamma(2)$; this gives the isomorphism

$$
\pi_{1}(X, x) \cong \Gamma(2) .
$$

The lift of γ under the Schwarz map s is a path in $\mathbf{H}-\operatorname{Fix}(\Delta)$ connecting w and $g^{\prime}(w)$ for some $g^{\prime} \in \Delta$; the correspondence

$$
\Gamma(2) \ni g \longmapsto g^{\prime}=r(g) \in \Delta
$$

is the homomorphism r via the identification $\pi_{1}(X, x) \cong \Gamma(2)$.
Proposition 1 Our function f is covariant of type $(\Gamma(2), r, \Delta)$.
Proof. We have

$$
f(g(z))=g^{\prime}(w)=g^{\prime}(f(z)), \quad g \in \Gamma(2) .
$$

The following illustration may help the reader.

$$
\begin{array}{cccc}
\mathbf{H} & \ni z & \xrightarrow{\lambda^{*}(\gamma)} & g(z) \\
\downarrow & \downarrow & & \downarrow \\
\mathbf{H}-\operatorname{Fix}(\Delta) & \ni & w & \xrightarrow{s_{*}(\gamma)} \\
\downarrow & r(g)(w) \\
\downarrow & \downarrow & & \\
X & \ni & x & \xrightarrow{\gamma}
\end{array}
$$

3.1 The kappa function

We are especially interested in the case

$$
\left(k_{0}, k_{1}, k_{\infty}\right)=(3,2, \infty) .
$$

The monodromy group $\Delta_{(3,2, \infty)}$ is isomorphic to $\Gamma(1)=P S L_{2}(\mathbf{Z})$, and the map s^{-1} is usually denoted by J. We name the function f as the kappa function κ; this is because the letter k is situated between j and l in the alphabetic sequence. So we have

$$
J(\kappa(z))=\lambda(z) .
$$

We normalize the maps in question as

$\{1\}$	\mathbf{H}	$z=$	0	∞	1
\mid	$\downarrow \kappa$		\downarrow	\downarrow	\downarrow
N	$\mathbf{H}-\Gamma(1)\{i, \rho\}$	$w=$	ρ	i	∞
\mid	$\downarrow J$		\downarrow	\downarrow	\downarrow
$\Gamma(2)$	X	x	$=0$	1	∞

where $\rho=\exp (2 \pi i / 6)$. Let γ_{0} and γ_{1} be the simple loops (with base point in the lower half x-plane) around 0 and 1 as are shown in Figure 1. According to the normalization above, γ_{0} and γ_{1}, as elements of $\pi_{1}(X)$, are identified respectively with the two generators

$$
g_{0}: z \mapsto \frac{z}{-2 z+1} \quad \text { and } \quad g_{\infty}: z \mapsto z+2
$$

of $\Gamma(2)$; they fix 0 and ∞, respectively. Then the subgroup N is the smallest normal subgroup of $\Gamma(2)$ containing

$$
g_{0}^{3}: z \mapsto \frac{z}{-6 z+1} \quad \text { and } \quad g_{\infty}^{2}: z \mapsto z+4
$$

and the isomorphism $\Gamma(2) / N \cong \Gamma(1)$ is given by the surjective homomorphism $r: \Gamma(2) \rightarrow \Gamma(1)$ defined by

$$
g_{0} \longmapsto\left(w \mapsto \frac{1}{1-w}\right) \quad \text { and } \quad g_{\infty} \longmapsto\left(w \mapsto \frac{-1}{w}\right) .
$$

Thus our function κ satisfies

$$
\kappa\left(\frac{z}{-2 z+1}\right)=\frac{1}{1-\kappa(z)} \quad \text { and } \quad \kappa(z+2)=\frac{-1}{\kappa(z)} .
$$

Figure 1: A geometric explanation of the correspondence: $\gamma_{0} \leftrightarrow g_{0}, \gamma_{1} \leftrightarrow g_{\infty}$

3.2 A fundamental domain for N

Recall that the map $\kappa: \mathbf{H} \rightarrow \mathbf{H}-\Gamma(1)\{i, \rho\}$ is the universal cover (of the infinitely punctured upper half w-plane $\mathbf{H}-\Gamma(1)\{i, \rho\})$ with the transformation group $N \subset$ $\Gamma(2)$. To obtain a fundamental domain of N in the upper half z-plane, we cut the punctured upper half w-plane so that it becomes simply connected.

Our cut shown in Figure 2 is invariant under the action of $\Gamma(2)$, where $\Gamma(2)$ is here regarded as the subgroup of $\Gamma(1)$ acting on the w-space. In the figure, a fundamental domain of $\Gamma(2)$ is shown as the union of twelve triangles $1, \ldots, 6,1^{\prime}, \ldots, 6^{\prime}$, each of which is a fundamental domain of the extended triangle group of $\Gamma(1)$. Our cuts are now given by

$$
1 \cap 6, \quad 1^{\prime} \cap 2^{\prime}, \quad 3^{\prime} \cap 4^{\prime}, \quad 5^{\prime} \cap 6^{\prime}, \quad 6^{\prime} \cap 1^{\prime} .
$$

It is easy to check that the complement of the $\Gamma(2)$-orbits of these cuts is connected and simply connected. If we draw this connected net of triangles on the z-plane

Figure 2: $\Gamma(2)$-invariant cuts of the w-plane $\mathbf{H}-\Gamma(1)\{i, \rho\}$
through κ, shown in Figure 1, making use of the Schwarz reflection principle, we eventually obtain a fundamental domain of N bounded by infinitely many arcs as is shown in Figure 3.

Figure 3: A fundamental domain of N in the z-plane \mathbf{H}

3.3 A Fourier expansion of the kappa function

In this section we compute the Fourier development of $\kappa(z)$ at $z=i \infty$. Since $\kappa(z+4)=\kappa(z)$ and $\kappa(\infty)=i$ by definition, the Fourier series of $\kappa(z)$ has the form

$$
\kappa(z)=i\left(1+a_{1} q+a_{2} q^{2}+a_{3} q^{3}+\cdots\right),
$$

where

$$
q:=\exp \frac{\pi i z}{2} .
$$

Proposition 2 1) The nth Fourier coefficient a_{n} of $\kappa(z)$ can be expressed as a polynomial of degree n in $a:=a_{1}$ with rational coefficients, starting with $a^{n} / 2^{n-1}+\cdots$ and having no constant term. The polynomial is even or odd according as n is even or odd.
2) The value of a is explicitly given by

$$
a=-i \frac{32}{\sqrt{3}} \frac{\pi^{2}}{\Gamma(1 / 4)^{4}}=-1.0552729262852 \cdots \times i
$$

Example 1

$$
\begin{aligned}
& a_{1}=a, \\
& a_{2}=\frac{1}{2} a^{2}, \\
& a_{3}=\frac{1}{4} a^{3}-\frac{16}{27} a, \\
& a_{4}=\frac{1}{8} a^{4}-\frac{16}{27} a^{2}, \\
& a_{5}=\frac{1}{16} a^{5}-\frac{4}{9} a^{3}+\frac{98}{1215} a, \\
& a_{6}=\frac{1}{32} a^{6}-\frac{8}{27} a^{4}+\frac{934}{3645} a^{2}, \\
& a_{7}=\frac{1}{64} a^{7}-\frac{5}{27} a^{5}+\frac{787}{2430} a^{3}-\frac{1504}{6561} a, \\
& a_{8}=\frac{1}{128} a^{8}-\frac{1}{9} a^{6}+\frac{41}{135} a^{4}-\frac{9088}{32805} a^{2} .
\end{aligned}
$$

Proof. For 1), we shall establish recursion relations among a_{n} 's. First, by the identity

$$
\kappa(z+2)=-\frac{1}{\kappa(z)},
$$

we immediately obtain the recursion with which the even index coefficients are determined by the previous ones.

Lemma 1 For each even integer $n \geq 2$, we have

$$
\begin{equation*}
a_{n}=\sum_{i=1}^{n / 2-1}(-1)^{i-1} a_{i} a_{n-i}+(-1)^{n / 2-1} \frac{a_{n / 2}^{2}}{2} . \tag{1}
\end{equation*}
$$

In particular, $a_{2}=a_{1}^{2} / 2, a_{4}=a_{1} a_{3}-a_{2}^{2} / 2, a_{6}=a_{1} a_{5}-a_{2} a_{4}+a_{3}^{2} / 2, \ldots$.
Proof. Since we have $\kappa(z+2)=i\left(1-a_{1} q+a_{2} q^{2}-a_{3} q^{3}+\cdots\right)$, we get the recursion by expanding $\kappa(z+2) \kappa(z)$ and equating the coefficient of q^{n} with 0 .

Note $\kappa(z+2) \kappa(z)$ is the even function of q and so for odd n the coefficient is automatically 0 . To determine a_{n} for odd n, we make use of the explicit formula
for the Schwarzian derivative $\{\kappa ; z\}$. To describe this, we introduce Jacobi's theta constants;

$$
\theta_{0}(z)=\sum_{n \in \mathbf{Z}}(-1)^{n} q^{2 n^{2}}, \quad \theta_{2}(z)=\sum_{n \in \mathbf{Z}} q^{\frac{(2 n+1)^{2}}{2}}, \quad \theta_{3}(z)=\sum_{n \in \mathbf{Z}} q^{2 n^{2}} .
$$

They satisfy the famous identity $\theta_{0}(z)^{4}+\theta_{2}(z)^{4}=\theta_{3}(z)^{4}$, which will be used later. By these theta's, our λ function can be expressed as

$$
\lambda(z)=\frac{\theta_{0}(z)^{4}}{\theta_{3}(z)^{4}}=1-16 q^{2}+128 q^{4}-704 q^{6}+\cdots
$$

In fact, the $\Gamma(2)$-invariance is classical and the only thing we have to check is the values $\lambda(\infty)=1, \lambda(0)=0$ and $\lambda(1)=\infty$ that we have chosen to normalize λ. But this is readily seen by the above and the following expansions

$$
\begin{aligned}
\lambda\left(-\frac{1}{z}\right) & =\frac{\theta_{2}(z)^{4}}{\theta_{3}(z)^{4}}=16 q^{2}-128 q^{4}+704 q^{6}+\cdots \\
\lambda\left(1-\frac{1}{z+1}\right) & =\frac{\theta_{3}(-1 /(z+1))^{4}}{\theta_{0}(-1 /(z+1))^{4}}=\frac{\theta_{3}(z)^{4}}{\theta_{2}(z)^{4}}=\frac{1}{16 q^{2}}+\frac{1}{2}+\frac{5}{4} q^{2}+\cdots,
\end{aligned}
$$

which can be derived from the well-known transformation formulae (cf. [Mum])

$$
\begin{array}{ll}
\theta_{0}(z+1)=\theta_{3}(z), & \theta_{0}(-1 / z)=\sqrt{z / i} \theta_{2}(z), \\
\theta_{2}(z+1)=e^{\pi i / 4} \theta_{2}(z), & \theta_{2}(-1 / z)=\sqrt{z / i} \theta_{0}(z), \\
\theta_{3}(z+1)=\theta_{0}(z), & \theta_{3}(-1 / z)=\sqrt{z / i} \theta_{3}(z) .
\end{array}
$$

Lemma 2 We have

$$
\begin{equation*}
\frac{2 \kappa^{\prime} \kappa^{\prime \prime \prime}-3 \kappa^{\prime \prime 2}}{\kappa^{\prime 2}}=-\frac{1}{9}\left(5 \theta_{0}(z)^{4} \theta_{3}(z)^{4}+4 \theta_{3}(z)^{8}\right), \tag{2}
\end{equation*}
$$

where ${ }^{\prime}=q \frac{d}{d q}=\frac{2}{\pi i} \frac{d}{d z}$.
Proof. Since we have

$$
\begin{aligned}
& -4\left\{\lambda^{-1} ; x\right\}=\frac{1}{x^{2}}+\frac{1}{(1-x)^{2}}+\frac{1}{x(1-x)} \\
& -4\left\{J^{-1} ; x\right\}=\frac{1-(1 / 3)^{2}}{x^{2}}+\frac{1-(1 / 2)^{2}}{(1-x)^{2}}+\frac{1-(1 / 3)^{2}-(1 / 2)^{2}}{x(1-x)}
\end{aligned}
$$

the connection formula of the Schwarzian derivative

$$
\begin{aligned}
\{\kappa ; z\}=\left\{J^{-1} \circ \lambda ; z\right\} & =\{\lambda ; z\}+\left\{J^{-1} ; x\right\}\left(\frac{d x}{d z}\right)^{2} \\
& =\left(-\left\{\lambda^{-1} ; x\right\}+\left\{J^{-1} ; x\right\}\right)\left(\frac{d x}{d z}\right)^{2}
\end{aligned}
$$

allows us to express the Schwarzian $\{\kappa ; z\}$ as a rational function of $x=\lambda(z)$ and its derivative (we multiply $(2 / \pi i)^{2}$ on both sides to have a formula with ${ }^{\prime}=q d / d q$):

$$
\frac{2 \kappa^{\prime} \kappa^{\prime \prime \prime}-3 \kappa^{\prime \prime 2}}{\kappa^{\prime 2}}=-\frac{\lambda^{\prime}(z)^{2}}{36}\left(\frac{5 \lambda(z)+4}{\lambda(z)^{2}(1-\lambda(z))^{2}}\right) .
$$

The lemma then follows from the identities

$$
\lambda^{\prime}(z)=-2 \theta_{2}(z)^{4} \lambda(z) \quad \text { and } \quad 1-\lambda(z)=\frac{\theta_{2}(z)^{4}}{\theta_{3}(z)^{4}}
$$

Now we use (2) to obtain another recursion for a_{n}. Put

$$
\frac{1}{9}\left(5 \theta_{0}(z)^{4} \theta_{3}(z)^{4}+4 \theta_{3}(z)^{8}\right)=\sum_{n=0}^{\infty} b_{n} q^{n}
$$

By the formulas

$$
\begin{aligned}
\theta_{0}(z)^{4} \theta_{3}(z)^{4} & =1+16 \sum_{n=1}^{\infty}\left(\sum_{d \mid n}(-1)^{d} d^{3}\right) q^{4 n} \\
\theta_{3}(z)^{8} & =1+16 \sum_{n=1}^{\infty}(-1)^{n}\left(\sum_{d \mid n}(-1)^{d} d^{3}\right) q^{2 n}
\end{aligned}
$$

the b_{n} is explicitly given by $b_{0}=1$ and

$$
b_{n}= \begin{cases}0, & \text { for } n: \operatorname{odd} \\ (-1)^{n / 2} \frac{64}{9} \sum_{d \mid n / 2}(-1)^{d} d^{3}, & \text { for } n \equiv 2 \bmod 4, \\ (-1)^{n / 2} \frac{64}{9} \sum_{d \mid n / 2}(-1)^{d} d^{3}+\frac{80}{9} \sum_{d \mid n / 4}(-1)^{d} d^{3}, & \text { for } n \equiv 0 \bmod 4\end{cases}
$$

Equating the coefficients of q^{n+1} on both sides of

$$
2 \kappa^{\prime} \kappa^{\prime \prime \prime}-3 \kappa^{\prime \prime 2}=-\kappa^{\prime 2} \sum_{n=0}^{\infty} b_{n} q^{n}
$$

we obtain, after some manipulation, the recursive relation

$$
\begin{aligned}
2 n(n-1)(n-2) a \cdot a_{n}= & -\sum_{i=2}^{n-1} i(n+1-i)\left(2(n+1)^{2}-7 i(n+1)+5 i^{2}+1\right) a_{i} a_{n+1-i} \\
& -\sum_{j=1}^{n-1} b_{j} \sum_{i=1}^{n-j} i(n+1-j-i) a_{i} a_{n+1-j-i} .
\end{aligned}
$$

With this recursion and $a_{1}=a, a_{2}=a^{2} / 2$, we can deduce all the assertions in 1) of Proposition 2 by induction. For parity result we should note that $b_{j}=0$ for j odd, and for the top term we use the identity

$$
\sum_{i=2}^{n-1} i(n+1-i)\left(2(n+1)^{2}-7 i(n+1)+5 i^{2}+1\right)=-2 n(n-1)(n-2)
$$

and note the second sum on the right has lower degree.
Next we evaluate a. Differentiating the identity $J(\kappa(z))=\lambda(z)$ twice and multiplying both sides by $\left(\frac{2}{\pi i}\right)^{2}$, we have

$$
\begin{equation*}
\frac{d^{2} J}{d w^{2}}(\kappa(z))\left(q \frac{d \kappa}{d q}(z)\right)^{2}+\frac{d J}{d w}(\kappa(z))\left(q \frac{d}{d q}\right)^{2} \kappa(z)=\left(q \frac{d}{d q}\right)^{2} \lambda(z)=-64 q^{2}+\cdots \tag{3}
\end{equation*}
$$

After dividing this by q^{2}, we look at the limit when $z \rightarrow i \infty($ so $w \rightarrow i$ and $q \rightarrow 0$). Since

$$
\left(q \frac{d \kappa}{d q}(z)\right)^{2}=-a^{2} q^{2}+\cdots, \quad\left(q \frac{d}{d q}\right)^{2} \kappa(z)=i a q+\cdots,
$$

we need the limiting values of $d^{2} J(w) / d w^{2}$ and $(d J(w) / d w) / q$ as $w \rightarrow i(w=\kappa(z))$. To compute these, we use the classical Eisenstein series

$$
\begin{aligned}
& E_{2}(w)=1-24 \sum_{n=1}^{\infty}\left(\sum_{d \mid n} d\right) e^{2 \pi i n w} \\
& E_{4}(w)=1+240 \sum_{n=1}^{\infty}\left(\sum_{d \mid n} d^{3}\right) e^{2 \pi i n w}, \\
& E_{6}(w)=1-504 \sum_{n=1}^{\infty}\left(\sum_{d \mid n} d^{5}\right) e^{2 \pi i n w},
\end{aligned}
$$

and the cusp form

$$
\Delta(w)=e^{2 \pi i w} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n w}\right)^{24}
$$

Lemma 3 We have

$$
\frac{\frac{d J}{d w}(w)}{q} \longrightarrow-2 \pi^{2} i a E_{4}(i) \quad(\text { as } w \rightarrow i)
$$

and

$$
\frac{d^{2} J}{d w^{2}}(i)=-2 \pi^{2} E_{4}(i)
$$

Proof. We use the formula

$$
\frac{d E_{6}}{d w}(w)=\pi i\left(E_{2}(w) E_{6}(w)-E_{4}(w)^{2}\right)
$$

as well as the value $E_{6}(i)=0$ and $d w / d z=d \kappa(z) / d z=-\pi a q / 2+\cdots$ to obtain (use de L'Hôpital's rule)

$$
\lim _{z \rightarrow i \infty} \frac{E_{6}(w)}{q}=\lim _{z \rightarrow i \infty} \frac{\pi i\left(E_{2}(w) E_{6}(w)-E_{4}(w)^{2}\right) \frac{d w}{d z}}{\frac{\pi i}{2} q}=\pi a E_{4}(i)^{2}
$$

Hence by

$$
\frac{d J}{d w}(w)=-2 \pi i \frac{E_{6}(w)}{E_{4}(w)} J(w) \quad \text { and } \quad J(i)=1
$$

we obtain

$$
\lim _{z \rightarrow i \infty} \frac{\frac{d J}{d w}(w)}{q} \longrightarrow-2 \pi^{2} i a E_{4}(i)
$$

For the second value, we compute

$$
\frac{d^{2} J}{d w^{2}}(w)=-2 \pi i\left(\frac{d}{d w}\left(\frac{J(w)}{E_{4}(w)}\right) E_{6}(w)+\frac{J(w)}{E_{4}(w)} \cdot \pi i\left(E_{2}(w) E_{6}(w)-E_{4}(w)^{2}\right)\right)
$$

and use $E_{6}(i)=0, J(i)=1$.
Applying this lemma to the identity (3) together with the evaluation

$$
E_{4}(i)=\frac{3}{64} \frac{\Gamma(1 / 4)^{8}}{\pi^{6}}
$$

we obtain

$$
a^{2}=-\frac{1024}{3} \frac{\pi^{4}}{\Gamma(1 / 4)^{8}} .
$$

Since $\kappa(z)$ tends to i from the right on the unit circle as z goes up to infinity along the pure-imaginary axis, ia must be positive. This proves 2) of Proposion 2.

References

[KK] M. Kaneko and M. Koike, On modular forms arising from a differential equation of hypergeometric type, to appear in The Ramanujan J.
[Mum] D. Mumford, Tata Lectures on Theta I, Progress in Math., Birkhäuser, 1983.
[OY] H. Ochiai and M. Yoshida, Polynomials associated with the hypergeometric functions with finite monodromy groups, preprint 2003.
[Yos] M. Yoshida, Hypergeometric Functions, My Love: Modular Interpretations of Confuguration Spaces, Vieweg Verlag, Wiesbaden, 1997.

[^0]: *Department of Mathematics, Kyushu University, Fukuoka 812-8581 Japan
 ${ }^{\dagger}$ Department of Mathematics, Kyushu University, Fukuoka 810-8560 Japan

